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Abstract. We study the statistics of distributions on the celestial sphere in a Lorentz- 
invariant setting. There is no Lorentz-invariant fiducial measure on the sphere, so the usual 
information-theoretic analysis cannot be applied. Nevertheless we show that information 
theory can be used to analyse the distributions and simultaneously to provide a fiducial 
measure on the sphere. The most important application is to the cosmic microwave 
background. We do not reach any unusual conclusions about this, but provide a new 
justification for an ad hoc feature of the standard analysis. 

1. Introduction 

One of the most significant advances this century in our understanding of the founda- 
tions of physics was the application of information theory to statistical physics (Jaynes 
1957). Generally, the task of statistical physics is to predict the probability distribution 
of states of a physical system as a function of a few observable parameters. Information 
theory gives a general prescription for doing so. The central idea is that there is a 
quantitative measure, the information-theoretic entropy SI, of the lack of information 
in any probability distribution. Maximising this entropy subject to the known con- 
straints on the distribution leads to one’s best (i.e. least prejudiced) guess for the 
distribution subject to the known data. This approach has had two sorts of consequen- 
ces: first, it has given a broad justification for the usual partition function formalism 
independent of integrating the microphysical equations of motion or of arguments 
about weak coupling of the elements of an ensemble to each other or to an ambient 
heat bath; and second, it has allowed considerable generalisation. 

In principle, the information-theoretic approach can be applied to any system for 
which the measure on the space of states (and of course the observables as functions 
of the states) are known. It is however not always a trivial matter to find the correct 
measuret. There are several ways it can be determined. In the original work of Shannon 
and Weaver (1949), the distributions considered were on finite sets of points; it was 
natural to weight each point equally. In classical statistical mechanics, the measure 
is defined on the phase space and is determined by the symplectic form (Poisson 
bracket). In some cases, the measure is the volume form determined by the metric on 
a Riemannian manifold. Lastly, the measure may be determined by invariance under 
a group action. 

(In fact, in many physical applications, the measure is determined by invariance 
under a group action. For a finite set of points, the group is the group of permutations; 
for phase space, it is the group of canonical transformations; for a symmetric space, 
it is the group of isometries.) 

T This is sometimes called the reparamerrisation problem. 
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Let us consider the situation generally. Assume a manifold X on which a Lie 
group G acts. We suppose that G acts transitively, i.e. that given any two points in X ,  
there is at least one element of G taking the first to the second. It is well known 
mathematically that in this case there can be, up  to an  overall normalisation constant, 
at  most one  invariant measure. For example, X might be the circle and G its group 
of rotations; the measure is then df9/2.rr. Or X might be the plane and  G the group 
of Euclidean motions; then the measure is just d x  dy. 

The second example raises an  interesting point. If we had taken G to be the group 
of translations (that is, if we had excluded the rotations), that still would have been 
enough of a constraint to force the measure to be d x  dy. (Because the translations act 
transitively on the plane.) In other words, the problem of finding an invariant measure 
may be overdetermined. It is just luck that a n  invariant measure exists and  no incon- 
sistency arises from this, o r  is it a manifestation of some deeper principle? 

Other authors have realised that there is nothing mathematically to prevent incon- 
sistencies from arising (Jaynes 1973). The prevailing attitude seems to be, though, that 
in realistic problems, with finite-dimensional X and G, an  invariant measure always 
does exist. It is the purpose of this paper to give a counterexample, and  to develop, 
in spite of the absence of an  invariant measure, an  information-theoretic statistical 
analysis for it. So we shall give an example of a physical system with a natural group 
action for which no invariant measure exists, and  show that information theory can be 
used to select a measure. The set of states will be the set of light rays at a fixed event 
in space-time. These may be thought of as the points on the celestial sphere of a n  
observer at  that event; however, we shall not make a particular choice of observer, so 
the relevant group is the Lorentz group rather than the rotation group. 

The most important application of this is to the cosmic microwave background. 
The existence and  uniformity of this background are the primary evidence for the Big 
Bang cosmology. The fact that it is so nearly uniform has obscured a subtle question: 
how should the anisotropy best be measured? The difficulty is that there is no 
relativistically-invariant notion of a uniform distribution on the celestial sphere: if one 
observer sees the sphere uniformly illumined, another, boosted, observer will see a n  
anisotropic luminosity density which is brighter in the direction of the boost and  
dimmer behind. For small boosts, the density is approximately the superposition of 
a uniform and  a dipole distribution. This is what is observed for the microwave 
background. Its luminosity density contains a dipole moment corresponding to a boost 
of a few hundred km s-' which is interpreted as the speed of the Earth relative to the 
Friedmann-Robertson-Walker background (Wilkinson 1986). If there were a frame 
in which the luminosity were uniform, then of course we would agree that that is the 
Friedmann-Robertson- Walker frame, that it is the correct one for measuring the 
isotropy, and  that in fact the anisotropy is zero. But if no such frame exists (and this 
is the case), then there is an  issue of principle as to which frame one should use to 
measure the anisotropy (Liang and  Sachs 1980). Should one  use a frame in which the 
dipole moment vanishes, or rather one in which the weighted combination of the higher 
multipole moments is minimised? This is a more primitive problem than that of 
choosing a statistic-such as RMS departure from mean-for the anisotropy. We shall 
see that, according to information theory, the correct thing to d o  is to work in a frame 
in which the dipole moment is zero. 

Astronomers have long realised that analysis of the cosmic microwave background 
depends on the Lorentz frame used, and  have subtracted the dipole moment on this 
account. Because of the small boost involved, this is for practical purposes equivalent 
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to working in the frame in which the dipole moment is zero. Our results provide an 
independent and less ad-hoc justification for doing so. Also the arguments in this 
paper apply even to very inhomogeneous distributions, when it is less clear a priori 
that going to the zero-dipole-moment frame is the correct thing to do. If in the future 
neutrino astronomy were developed to a state where we could measure the cosmic 
neutrino background and it were found to be anisotropic, our analysis would be the 
correct one for quantifying the anisotropy. Similar comments apply to gravity waves. 

A careful treatment of the microwave, neutrino or gravity background would require 
discussion of a number of technical points (the fact that not just the direction, but the 
energy of the particles is detected, and other effects). For the present, though, we are 
interested rather in the issue of principle, so it will be helpful to consider a simpler 
situation. This is just that an imperfectly known distribution of massless particles is 
incident on some event in space-time. We observe the directions from which the 
particles come, but nothing else. We are to make the best inferences possible about 
the distribution from our data. 

Conuentions. The metric is denoted gab and has signature +---. If  V "  is a vector, 
then U' = u'u,. 

2. Measures on 9' 

Let Y be the set of light rays at an origin 0. Physically, there is no measure on Y 
invariant under the Lorentz group G, because if one observer at 0 sees Y uniformly 
illumined, another, boosted, observer at 0 will detect a non-uniform illumination. In 
order to make clear what depends on the observer and what does not, we will introduce 
a formalism which is Lorentz invariant. Although this involves a few technicalities, it 
is worth the effort, since it makes later calculations transparent and also because similar 
ideas apply more generally, as will be discussed in the last section. Our goal is to 
show that there is a 'twisted' two-form on Y which is invariant under G and in terms 
of which any two-form, i.e. any smooth measure, can be written. 

Let X be the set of non-zero null vectors. A vector ~ " ( 1 " )  at I" in J+' can be regarded 
as an infinitesimal perturbation of I" to I" + ~ u " ( 1 " ) .  Since the perturbed point must 
also be on N, we have ( I "  + ~ u " ( 1 " ) ) ~  = 0 to first order in E ,  i.e. u " ( l " ) l ,  = 0. 

Now consider 9. Any point in Y may be represented by a non-zero null vector I" .  
The same point is also represented by AI", where A is any non-zero real number. We 
will write 

I"  - n" if I" = An" for some A # 0 

and say I" and n" are equivalent in this case. Now suppose ~ " ( 1 " )  is a tangent vector 
to Y at the point I" represents. Again, we can regard the vector as determining an 
infinitesimally displaced point I" + &U"( I " ) .  We know from the above that for this to 
be null we must have ua(Za)Ia = 0. We also know that if u"(Z") is proportional to I", 
then I a + ~ u a ( I a ) - l a  so in this case ~ " ( 1 " )  represents the zero tangent vector. Thus 
~ " ( 1 " )  is determined by only modulo addition of multiples of I " .  Lastly, we must make 
sure that ~ " ( 1 " )  is compatible with the freedom to multiply I" by A :  

( A I " ) +  E u " ( A 1 " )  - I" + ~ u " ( 1 " ) .  

This implies that u " ( A l " ) = A u " ( l " ) .  To summarise: a tangent vector to Y at I" is  
represented by a quantity ~ " ( 1 " )  satisfying u " ( l " ) l ,  = 0 ,  homogeneous of degree one in 
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I" ,  and dejined modulo addition of multiples of I". This gives a Lorentz-invariant 
characterisation of the tangent vectors to 9, since we did not need to choose any 
coordinates. We will drop the explicit dependence of v u  on l a ,  but it should be 
remembered that tangent vectors at 1" are homogeneous of degree one in I" .  

We turn now to two-forms at 1" on 9. A two-form is represented as vQb dl" A dlb 
where vab = -vba. Given any two tangent vectors U" and w" at I",  the two-form gives 
a measure of the signed area of the infinitesimal parallelogram they determine, 

2 VahV " w b. 

There are several restrictions on Vab if this is to be well defined. First, vab must be 
homogeneous of degree -2 in I" ,  since the area is just a number (i.e. homogeneous of 
degree zero) and U' and w a  are each homogeneous of degree one. Next, since U" and 
w" are only defined up to multiples of I " ,  the area must be insensitive to this freedom, 
which means we must have 

vu,l" = 0. 

Lastly, we note that since v"lu = w"1, = 0, the addition of a term of the form lagb - qalb 
to vab does not effect the two-form. To summarise: a two-form on Y is represented by 
a quantity vab dl" A dlb, homogeneous of degree -2 in I" ,  satisfying vabl' = 0 and dejined 
modulo addition of terms of the form lagh - qa1b. 

The twisted two-form is a quantity vQb dl" A dlb which we shall write as p for short 
with the following properties: ( a )  it is Lorentz-invariant; ( b )  for any + ( I " )  
homogeneous of degree - 2 ,  the combination 4 ( l a ) p  is a two-form on 9, and every 
two-form in Y arises this way; (c) jy ( rala)-2p = 1 for any timelike vector r' with t 2  = 1. 
These properties are all that are necessary in this paper, but we give an explicit formula 
for p for the sake of concreteness. 

Let 

k, = Eabcdlb dl' A dld. (1) 

We have v"ka = O  only for Ualb&&d =O, i.e. only for v" proportional to 1". Using the 
fact that 1" is null, it is not hard to show that this implies that k, must itself be 
proportional to l a ,  

k, = fovcd dl" A dld (2) 

VCd = Vulb&abcd(Va/a)-' ( 3 )  

for some vbc .  We can find vab explicitly by combining (1) and ( 2 ) :  

for any vector v u  with v"la # 0, and this is independent of U". The reader not fluent 
with the tensor algebra leading to (2) can take (3) as a definition and verify that the 
right-hand side is independent of v"  (up to the addition of terms of the form I& - q c f d ) .  

Now we write 

p = ( 1/4r)vab dl' A dld 

for short. By construction, p is Lorentz-covariant. It is clear from (3) that Vabf' = 0 
and so ~ $ ( l ' ) p  is a two-form on Y for any d(1") homogeneous of degree -2 .  Moreover, 
since all two-forms on a two-manifold are proportional and p is not zero, any two-form 
on Y is a multiple of p and thus can be written as 4 ( l ' ) p  with 4(1') homogeneous 
of degree -2. Lastly, an explicit calculation shows that j5f ( t a l a ) - * @  = l / t 2  if t a  is 
timelike. 
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3. Distributions and information theory on Y 

Suppose there are some massless particles which pass through the event 0. The relative 
density of particles coming in along the ray I" defines is given by p ( l " ) ,  a function 
homogeneous of degree - 2 ,  with 1, p ( l " ) p  the fraction of particles piercing the subset 
C of the celestial sphere 9'. An observer at 0 will in general have only imperfect 
knowledge of p(Z"); we wish to know what is the best inference for p(l") given limited 
data. 

If there were a natural measure d21= m ( l " ) p  on 9, we could apply the 
usual formalism of information theory. We would maximise the entropy 
-l,y p(l") log(p(la) /m(la))p subject to the constraints imposed by the observed data. 
However, there is no natural measure on 9, and we must develop a new technique. 
(One might think of using the 'observer at 0 ' s '  frame to define a measure on 9. This 
is unsatisfactory, for two observers with different frames might both measure the same 
moment, say, of p ( l " ) ,  and if they used different measures they would infer different 

We may turn the problem around, and ask instead, is there a least prejudiced 
observer? An observer with timelike tangent t u  sees the celestial sphere equipped with 
a measure p, = ( t a l o ) - ' +  and interprets p, = p( l a ) (  t a l a ) 2  as the number density of 
massless particles per steradian. He or she would assign an entropy 

P(1")'S.I 

to the distribution. Suppose for the moment the distribution p ( l " )  is known. In general, 
the information-content of the distribution can be regarded as having two contributions: 
one intrinsic to p ( l " ) ;  and the other coming from t". In general, there is no way to 
split the information into two parts and so recover the 'pure information content' of 
t". It is reasonable however to regard S, .  - S,  as the difference in information due to 
t" and t ta ,  and to call an observer with maximum entropy a least prejudiced observer, 
and the negative of this entropy the irreducible information in the distribution. Remark- 
ably, it turns out that there is a unique choice of t" which maximises s,. 

The symbol D, will be used to denote the covariant derivative intrinsic to the 
hyperboloid t 2  = 1; it is defined by taking slat" and then projecting all components 
orthogonal to f a .  Thus 

2 ( t , r a ) - 1 p i a p + 2 t a .  

This means that t" is a critical point of the entropy iff 

I, (toia)-'plap = t o .  

This is the requirement that p(2") have no dipole moment in the frame defined by t a .  
So the frame of highest entropy is the frame in which the distribution has no dipole 
moment. This analysis is the one relevant to the microwave background, since, to 
good approximation, we may regard p(l") as known. We conclude that the correct 
measure of its anisotropy, according to information theory, is its entropy in the frame 
in which it has no dipole moment. This is the frame that has been used for analysis 
for other reasons: in this frame, the 'net velocity' of the microwave background is zero. 
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Whenever p ( I " )  is smooth, there is a unique frame in which its dipole moment 
vanishes. This can be established by representation-theory arguments about the Lorentz 
group, or more prosaically by calculating the Hessian 

DoD$,=2 ( f , I " ) - 2 p [ ( l , - r , f '  / ) ( I b - f h f *  / ) ] / . L + 2 ( g c l / , - f , f / , )  
J' 

and checking that it is negative-definite, and that S ,  diverges to -m as t u  goes to 
infinity on the hyperboloid t 2  = 1. A similar argument applies to not-too-pathological 
non-smooth distributions. 

Let us now consider the case where p ( l " )  is only imperfectly known. Suppose an 
observer measures the moment 

of a function ~ ( 1 ' )  (homogeneous of degree zero). We want to determine what his 
or her best guess for p is, based on this datum. We interpret this to mean finding what 
distribution p and vector t" maximise the entropy S,  subject to (4). The answer can 
be found by standard techniques (Lagrange multipliers). We define the partition 
function 

z = z(p, t " )  = I, e-p?(t /)-2p 

and determine p and r "  implicitly from the simultaneous equations 

E = -ap log Z 

to = -(+)a,. log Z. 

Then 

p (  I " )  = e-p"( t - [)--*z-'. 
It can be shown that (as long as ~ ( 1 " )  is not constant) there will always be a unique 
solution to these equations. If we think of E as the energy, then the equation relating 
it to the inverse temperature p is the standard one. What is interesting here is that 
there is a Lagrange equation for the vector f "  too, and it formally is its own inverse 
temperature. 

4. Operational interpretation 

The absence of a Lorentz-invariant measure on Y means it is impossible to pick light 
rays through 0 'at random' in a relativistically invariant fashion. We would like to 
give another, operational, perspective on this. 

In order to phrase this properly, let us recall that a probability space is a collection 
of three things: a set X; a family of subsets of X (the space of events-events in the 
sense of probability theory, not relativity); and a measure defined on the family. For 
us, X is a smooth manifold, the family of sets is determined by the open sets in the 
manifold, and the measure is a smooth measure. The measure of any open set is the 
relative probability that a point chosen 'at random' will lie in that set. One talks of 
picking points in X 'at random'. This is something of an abuse, since each point has 
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measure zero and therefore zero chance of being chosen. What one really means is, 
picking the location of a point up to a small but non-zero uncertainty. 

Let us try to construct a method of ‘picking light rays at random’, and see what 
goes wrong. Do the following. 

1 .  Pick ‘at random’ a future-pointing unit vector t o .  (Here ‘at random’ refers to 
the natural measure on the hyperboloid of future-pointing unit vectors, which is induced 
by the metric on Minkowski space.) 

2 .  Pick ‘at random’ (with respect to p , )  a light ray. 
3. Repeat steps 1 and 2 as often as desired, until a distribution of light rays is built 

up on 9. 
In practice, this involves two limiting procedures. The first occurs for both steps 

1 and 2; it is the fact that one does not really pick the vector f Q  or the light-ray with 
perfect accuracy. This is only a technicality for us. The second limit is the heart of 
the matter, though. This is that the measure on the hyperboloid of future-pointing 
unit vectors is not normalisable. (Just as the usual measure dx on the real line is not 
normalisable: dx = CO.) If one demands that the points should be evenly distributed 
over the hyperboloid to some given accuracy, then, no matter what the accuracy is, 
one needs infinitely many points on the hyperboloid. This means that, even to achieve 
a model where the vectors are evenly distributed on the hyperboloid to finite accuracy, 
some limiting procedure must be involved. The content of our observation that no 
Lorentz-invariant measure exists on Y is that, the distribution deriued by applying steps 
1-3 at best depends on the limiting procedure involved in step 1 ,  and at worst muy not 
exist. (That is, the limiting distribution on 9 may not exist, even though the one on 
the hyperboloid does.) 

Briefly, it is impossible to give an operational sense to ‘picking points at random’ 
relativistically on Y. 

5. Discussion 

Information theory sets itself the problem of finding the most reasonable probability 
distribution that can be inferred from limited measurements. The data required (the 
set, the collection of subsets, and the measure on them) form a probability space in 
the sense of Kolmogorov. The measure is what we have called a fiducial measure; it 
represents the probabilities one would assign in the absence of any information. It is 
generally determined from physical considerations in the particular problem. 

The relativistically invariant analysis of the celestial sphere shows that it is possible 
to generalise this approach to a case where a fiducial measure is not available. Although 
one is unable to assign a probability distribution on Y in the absence of information, 
it turned out that, as soon as any information was given, it was again possible to apply 
information theory. 

Suppose more generally that a Lie group G acts on a manifold X (both finite- 
dimensional), and that the action is transitive. Let x be a point in X ,  and G, the 
subgroup of G which fixes x. If G, is compact, then there is a measure on X which 
is invariant under G and unique up to normalisation. (The construction is straightfor- 
ward; one picks a volume form po at some xo ,  then defines p, by averaging over the 
different possible ways of using the action of G to carry xo to x. If X is not orientable, 
one must work with the measure which is the absolute value of the volume form.) For 
example, if X is the plane and G is the group of Euclidean motions, then G, is 0 ( 2 ) ,  
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the group of rotations and reflections about x. This is compact, and so there is a 
measure on the plane invariant under G. On the other hand, if X = Y and G is the 
Lorentz group, then G, is the group of null rotations about x. The group G, is itself 
isomorphic to the group of Euclidean motions of the plane (excluding reflections), 
and so is non-compact. 

In general, it turns out (essentially because all smooth volume-forms are propor- 
tional) that there is a ‘twisted’ measure on X invariant under G, unique up to 
normalisation. If one can also find a family of preferred measures (corresponding to 
the p,  for Y ) ,  then the analysis of this paper can be carried out. The essential physical 
input is the family of preferred measures. 

One might hope to carry out this analysis for Wiener measures, since these are not 
translationally invariant. However, any nai’ve adaptation of our approach seems 
impossible. The difficulty is that the Wiener measures based at different origins are 
very far from being multiples of each other. 
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